|
1: |
|
O(0) |
→ 0 |
2: |
|
0 + x |
→ x |
3: |
|
x + 0 |
→ x |
4: |
|
O(x) + O(y) |
→ O(x + y) |
5: |
|
O(x) + I(y) |
→ I(x + y) |
6: |
|
I(x) + O(y) |
→ I(x + y) |
7: |
|
I(x) + I(y) |
→ O((x + y) + I(0)) |
8: |
|
x + (y + z) |
→ (x + y) + z |
9: |
|
x - 0 |
→ x |
10: |
|
0 - x |
→ 0 |
11: |
|
O(x) - O(y) |
→ O(x - y) |
12: |
|
O(x) - I(y) |
→ I((x - y) - I(1)) |
13: |
|
I(x) - O(y) |
→ I(x - y) |
14: |
|
I(x) - I(y) |
→ O(x - y) |
15: |
|
not(true) |
→ false |
16: |
|
not(false) |
→ true |
17: |
|
and(x,true) |
→ x |
18: |
|
and(x,false) |
→ false |
19: |
|
if(true,x,y) |
→ x |
20: |
|
if(false,x,y) |
→ y |
21: |
|
ge(O(x),O(y)) |
→ ge(x,y) |
22: |
|
ge(O(x),I(y)) |
→ not(ge(y,x)) |
23: |
|
ge(I(x),O(y)) |
→ ge(x,y) |
24: |
|
ge(I(x),I(y)) |
→ ge(x,y) |
25: |
|
ge(x,0) |
→ true |
26: |
|
ge(0,O(x)) |
→ ge(0,x) |
27: |
|
ge(0,I(x)) |
→ false |
28: |
|
Log'(0) |
→ 0 |
29: |
|
Log'(I(x)) |
→ Log'(x) + I(0) |
30: |
|
Log'(O(x)) |
→ if(ge(x,I(0)),Log'(x) + I(0),0) |
31: |
|
Log(x) |
→ Log'(x) - I(0) |
32: |
|
Val(L(x)) |
→ x |
33: |
|
Val(N(x,l,r)) |
→ x |
34: |
|
Min(L(x)) |
→ x |
35: |
|
Min(N(x,l,r)) |
→ Min(l) |
36: |
|
Max(L(x)) |
→ x |
37: |
|
Max(N(x,l,r)) |
→ Max(r) |
38: |
|
BS(L(x)) |
→ true |
39: |
|
BS(N(x,l,r)) |
→ and(and(ge(x,Max(l)),ge(Min(r),x)),and(BS(l),BS(r))) |
40: |
|
Size(L(x)) |
→ I(0) |
41: |
|
Size(N(x,l,r)) |
→ (Size(l) + Size(r)) + I(1) |
42: |
|
WB(L(x)) |
→ true |
43: |
|
WB(N(x,l,r)) |
→ and(if(ge(Size(l),Size(r)),ge(I(0),Size(l) - Size(r)),ge(I(0),Size(r) - Size(l))),and(WB(l),WB(r))) |
|
There are 57 dependency pairs:
|
44: |
|
O(x) +# O(y) |
→ O#(x + y) |
45: |
|
O(x) +# O(y) |
→ x +# y |
46: |
|
O(x) +# I(y) |
→ x +# y |
47: |
|
I(x) +# O(y) |
→ x +# y |
48: |
|
I(x) +# I(y) |
→ O#((x + y) + I(0)) |
49: |
|
I(x) +# I(y) |
→ (x + y) +# I(0) |
50: |
|
I(x) +# I(y) |
→ x +# y |
51: |
|
x +# (y + z) |
→ (x + y) +# z |
52: |
|
x +# (y + z) |
→ x +# y |
53: |
|
O(x) -# O(y) |
→ O#(x - y) |
54: |
|
O(x) -# O(y) |
→ x -# y |
55: |
|
O(x) -# I(y) |
→ (x - y) -# I(1) |
56: |
|
O(x) -# I(y) |
→ x -# y |
57: |
|
I(x) -# O(y) |
→ x -# y |
58: |
|
I(x) -# I(y) |
→ O#(x - y) |
59: |
|
I(x) -# I(y) |
→ x -# y |
60: |
|
GE(O(x),O(y)) |
→ GE(x,y) |
61: |
|
GE(O(x),I(y)) |
→ NOT(ge(y,x)) |
62: |
|
GE(O(x),I(y)) |
→ GE(y,x) |
63: |
|
GE(I(x),O(y)) |
→ GE(x,y) |
64: |
|
GE(I(x),I(y)) |
→ GE(x,y) |
65: |
|
GE(0,O(x)) |
→ GE(0,x) |
66: |
|
Log'#(I(x)) |
→ Log'(x) +# I(0) |
67: |
|
Log'#(I(x)) |
→ Log'#(x) |
68: |
|
Log'#(O(x)) |
→ IF(ge(x,I(0)),Log'(x) + I(0),0) |
69: |
|
Log'#(O(x)) |
→ GE(x,I(0)) |
70: |
|
Log'#(O(x)) |
→ Log'(x) +# I(0) |
71: |
|
Log'#(O(x)) |
→ Log'#(x) |
72: |
|
Log#(x) |
→ Log'(x) -# I(0) |
73: |
|
Log#(x) |
→ Log'#(x) |
74: |
|
Min#(N(x,l,r)) |
→ Min#(l) |
75: |
|
Max#(N(x,l,r)) |
→ Max#(r) |
76: |
|
BS#(N(x,l,r)) |
→ AND(and(ge(x,Max(l)),ge(Min(r),x)),and(BS(l),BS(r))) |
77: |
|
BS#(N(x,l,r)) |
→ AND(ge(x,Max(l)),ge(Min(r),x)) |
78: |
|
BS#(N(x,l,r)) |
→ GE(x,Max(l)) |
79: |
|
BS#(N(x,l,r)) |
→ Max#(l) |
80: |
|
BS#(N(x,l,r)) |
→ GE(Min(r),x) |
81: |
|
BS#(N(x,l,r)) |
→ Min#(r) |
82: |
|
BS#(N(x,l,r)) |
→ AND(BS(l),BS(r)) |
83: |
|
BS#(N(x,l,r)) |
→ BS#(l) |
84: |
|
BS#(N(x,l,r)) |
→ BS#(r) |
85: |
|
Size#(N(x,l,r)) |
→ (Size(l) + Size(r)) +# I(1) |
86: |
|
Size#(N(x,l,r)) |
→ Size(l) +# Size(r) |
87: |
|
Size#(N(x,l,r)) |
→ Size#(l) |
88: |
|
Size#(N(x,l,r)) |
→ Size#(r) |
89: |
|
WB#(N(x,l,r)) |
→ AND(if(ge(Size(l),Size(r)),ge(I(0),Size(l) - Size(r)),ge(I(0),Size(r) - Size(l))),and(WB(l),WB(r))) |
90: |
|
WB#(N(x,l,r)) |
→ IF(ge(Size(l),Size(r)),ge(I(0),Size(l) - Size(r)),ge(I(0),Size(r) - Size(l))) |
91: |
|
WB#(N(x,l,r)) |
→ GE(Size(l),Size(r)) |
92: |
|
WB#(N(x,l,r)) |
→ GE(I(0),Size(l) - Size(r)) |
93: |
|
WB#(N(x,l,r)) |
→ Size(l) -# Size(r) |
94: |
|
WB#(N(x,l,r)) |
→ GE(I(0),Size(r) - Size(l)) |
95: |
|
WB#(N(x,l,r)) |
→ Size(r) -# Size(l) |
96: |
|
WB#(N(x,l,r)) |
→ Size#(r) |
97: |
|
WB#(N(x,l,r)) |
→ Size#(l) |
98: |
|
WB#(N(x,l,r)) |
→ AND(WB(l),WB(r)) |
99: |
|
WB#(N(x,l,r)) |
→ WB#(l) |
100: |
|
WB#(N(x,l,r)) |
→ WB#(r) |
|
The approximated dependency graph contains 5 SCCs:
{65},
{45-47,49-52},
{54-57,59},
{60,62-64}
and {67,71}.